skip to main content


Search for: All records

Creators/Authors contains: "Luo, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 6, 2024
  2. Free, publicly-accessible full text available April 27, 2024
  3. Abstract Wearing masks reduces the spread of COVID-19, but compliance with mask mandates varies across individuals, time, and space. Accurate and continuous measures of mask wearing, as well as other health-related behaviors, are important for public health policies. This article presents a novel approach to estimate mask wearing using geotagged Twitter image data from March through September, 2020 in the United States. We validate our measure using public opinion survey data and extend the analysis to investigate county-level differences in mask wearing. We find a strong association between mask mandates and mask wearing—an average increase of 20%. Moreover, this association is greatest in Republican-leaning counties. The findings have important implications for understanding how governmental policies shape and monitor citizen responses to public health crises. 
    more » « less
  4. Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this article, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quickly adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: (1) cST-ML captures the dynamics of traffic prediction tasks using variational inference, and to better capture the temporal uncertainties within tasks, cST-ML performs as a rolling window within each task; (2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic-related features; (3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models especially when obvious traffic dynamics and temporal uncertainties are presented. 
    more » « less